miércoles, 17 de junio de 2015

Algunas vueltas de tuerca a la teoría de cuerdas

Una de las cosas mas deprimentes del estado actual de la física de altas energías es la tremenda cantidad de posibilidades a estudiar.

 En los 80 había el sueño de una teoría unificada, en la que unos principios básicos, grupos de simetría gauge mas amplios cómo el SU(5) y supersimetría nos dieran una teoría única de la que se pudiera sacar todo. 

Posteriormente la teoría de cuerdas se vió cómo un paso extra hacia la unificación porque en un sólo objeto, la cuerda relativista cuantizada, con aderezo de supersimetría, se tenía que un único objeto (bueno, casi, que había 5 teorias de cuerdas, type I A y B, type II A y B y la heterótica) daba el espectro de todas las partículas.

 En los 90, con el descubrimiento de las dualidades, que venían a demostrar que esas diversas teorías de cuerdas eran (con matices) equivalentes pareció surgir un nuevo nivel de unificación. Al principio se pensó que la teoría M sería esa gran teoría unificada.

Pero las cosas no fueron por dónde se suponía. Las teorías Gauge de gran unificación empezaron a encontrarse con problemas, la más sencilla, el SU(5), predecía que el protón era inestable y los experimentos que buscan esa inestabilidad han invalidado el modelo. 
Se han construido variantes, flipped SU(5), SO(10), etc, que producen valores compatibles con la no observación de la desintegración del protón. 

Luego está el tema de los monopolos (distintos a los de Dirac, aquí son cuasipartículas asociadas a temas de naturaleza topológica-solitones-) que también predicen esa teorías y no se observan. Ahí la solución viene de la mano de la inflación, que habría diluido la densidad de solitones hasta un número de alrededor de uno por unidad observable del universo. 

Ahora, a raíz de el descubrimiento de modos tensoriales en el fondo de microondas por el experimento BICEP2, parece que hay una evidencia experimental sólida -aún sinconfirmar totalmente- y bastante directa de la inflación, así que ese punto quedaría más o menos zanjado.

En el terreno de la teoría de cuerdas la cosa se fué complicando mucho. 
En los 80 el paradigma era que se daría con una compactificación de las dimensiones extra de la cuerda heterótica que permitirían obtener el modelo standard, y que, además, nos darían pistas, o incluso todos los detalles, sobre cómo iría todo hasta energías superiores. 

Pero aunque se ha llegado muy cerca de tener un modelo standard a partir de la heterótica, con bastantes de los detalles, resulta que la forma de obtenerlo no es única, y cada variante predice a altas energías cosas diferentes.

 También, usando nuevos objetos aparecidos en los 90, las D-branas, y generalizaciones (M-branas de la teoría M, la 7-brana de la teoría F- otra variante de la teoría de cuerdas introducida por Cunrum Vafa) dieron nuevas maneras de obtener el modelo standard, con similar detalle, pero con un comportamiento más allá del modelo standard totalmente distinto entre ellas (aunque todas podrían agruparse en el paradigma de “mundos brana” dónde, simplificando, las partículas del modelo standard viven en 4 dimensiones y el gravitón en más) y completamente diferente al heterótico. 

Bien, hay dualidades, pero eso no significa que se pueda decir que son “moralmente iguales” esos escenarios, la física según sube la energía cambia totalmente, en algunos de ellos hacia un SU(5).

Y el descubrimiento de la constante cosmológica ya lo lía aún más, y terminamos con un montón de opciones tremendo. Por ejemplo, en el 2008 Vafa y colaboradores hicieron un auténtico tour de force con la teoría F, con bastantes artículos, algunos de más de 100 páginas, que hacían predicciones para el LHC que, lástima, predecían una masa del Higgs en unos márgenes que son incompatibles, por poco eso sí, con lo observado.

 Y, claro, si estás con un trabajo fijo (una tenure) en una universidad te puedes permitir embarcarte en esa odisea y que luego no salga nada. Pero sí eres un doctorando que intenta hacer algo que te de una plaza, es posiblemente deprimente.
Total, no daré mas detalles, que hay tantas posibilidades, para una teoría general, o incluso para relativamente pequeños campos (cuál es el modelo concreto de inflación, o no digamos ya que partículas forman la materia oscura), que uno se puede perder de mil maneras, sin ningún tipo de guía unificador. 

Hemos pasado de la gran unificación a la gran diversificación.

Envista de eso, aparte de mantenerse al día en lo que se va haciendo, yo, personalmente, intento pensar si hay algo que, sin renegar porque sí de lo que ya está hecho, si puede todavía haber alguna clave que guíe entre tantas posibilidades, por supuesto sin un éxito remarcable hasta ahora.

Voy a indicar ahora algunas de las ideas que he venido considerando, en particular las centradas en la teoría de cuerdas.

La idea más arriesgada es plantearse la misma teoría, pero con un cambio de paradigma. En vez de considerar que hay un espacio-tiempo y dentro de el unos objetos, las cuerdas, me planteo una opción diferente, pero que lleva a similar matemática.

En las ecuaciones de Einstein R_{\nu\mu} - g_{\nu\mu}R=T_{\nu\mu}  tenemos dos elementos, a la izquierda un elemento puramente geométrico, la curvatura, y a la derecha uno asociado totalmente a la materia, el tensor energía momento, asociado a las partículas.
 Entre esas partículas estaría el gravitón, que sería una fluctuación de la métrica. 
Digamos que el gravitón da la reacción del espacio-tiempo a si mismo.
 En la gravedad cuántica inicial, con partículas puntuales, se parte de una descomposición de una descomposición de la métrica en dos partes g_{\nu\mu}= \eta_{\nu\mu} + h_{\nu\mu}

Aquí \eta_{\nu\mu}sería el término de background (en el caso sencillo la métrica minkowsky), y h una fluctuación que, convenientemente cuantizada, sería el gravitón. Antes de seguir una reflexión algo tonta. 
Esa perturbación de la métrica tiene los mismos grados de libertad que una partícula de spin 2, y por eso se identifica una métrica, la característica de la gravedad con una partícula de spin 2.
 Lo curioso es que una métrica en geometría es una forma bilineal (o cuadrática, según se mire).
 Digamos que uno podría plantearse sí no debería pensarse que el observable básico de la gravedad cuántica, que es la métrica, no debería tal vez ser un objeto bilineal en vez de uno lineal. 
Pero claro, en cuántica los operadores deben ser lineales, y los intentos de hacer una teoría con operadores no lineales tiene muchos problemas, tanto prácticos como conceptuales. 
Por eso es más sencillo dejarlo correr y quedarse tranquilo con la identificación de la métrica con una partícula de spin 2, que es algo que tiene mas respaldos (teoría de Fierz-Pauli, en la que, recursivamente, a partir de gravitones se llega, más o menos a la relatividad general). 
La teoria para un gravitón inspirado en una partícula puntual es no renormalizable, pero en su variante en la que el gravitón aparece cómo uno de los modos de vibración de la cuerda da lugar a una teoría consistente, y eso es algo de agradecer.
En todo caso, seguimos teniendo dos objetos, el espacio-tiempo y la cuerda, y, en última instancia, el objeto mas interesante -para justificar la teoría cuanto menos- de la cuerda, el gravitón, es geométrico. Mi idea es ponerlo todo en el terreno del espacio-tiempo.
 La idea sería darle una cualidad extra, probablemente de naturaleza geométrica, a ese espaciotiempo para dotarlo de una naturaleza dinámica.
 Si pensamos en esa propiedad extra cómo una especie de “tensión” (con las adecuadas propiedades buenas de transformación) lo que tendríamos es que en el espacio-tiempo habría líneas de tensión. Y, cómo deberían tener propiedades buenas de covarianza esas líneas de tensión serían equivalentes matemáticamente a las cuerdas bosónicas.
 Digamos que matemáticamente serían el mismo objeto, pero conceptualmente cambiarían. en vez de ser unos entes que están ahí no se sabe porque, y que son extensos, y no se disgregan, por arte de magia, aparecerían de manera natural por resultado de una dinámica del propio espacio-tiempo. 

Por supuesto ahí habría un punto extra, una dinámica mas fundamental del espacio-tiempo que da lugar a que en este aparezcan líneas de tensión que podemos describir mediante las cuerdas. En este sentido las cuerdas serían sólo una descripción aproximada y habría algo más fundamental.

Por supuesto esa idea tiene muchos problemas
. Para empezar porque ese paradigma funciona bien para la cuerda bosónica, pero se complica para la supercuerda. 
En realidad, si uno parte de un superespacio (añadir coordenadas de Grassman, que están asociadas a fermiones, al espacio-tiempo ordinario) uno podría obtener la supercuerda, aunque, desde luego, la matemática es complicada.
 Normalmente las supercuerdas se obtienen mediante la imposición de supersimetría en el worldsheet y luego imponiendo condiciones varias, se llega a que hay supersimetría en el espacio target. 

Pero vamos, en principio se puede obtener un lagrangiano supersimétrico desde el superespacio, y lo mismo para una supercuerda. Si partimos de una teoría gravitatoria en el superespacio podríamos jugar al juego anterior, de líneas de tensión en el superespacio, que serían las cuerdas. Pero, claro, en realidad se puede demostrar que la teoria de cuerdas en su formulación habitual, tiene cómo limites de baja energía las teorías de supergravedad. En ese sentido la cuerda es mas fundamental que la supergravedad. 

En el paradigma que propongo sería mas rebuscado. Hay una dinámica, que no sabemos, que se asemeja a la supergravedad (da un superespacio al menos), pero que en principio es distinta, y mas complicada. Esa teoría permite hablar de “tensiones” en el superespacio, que, identidificadas cómo cuerdas, dan lugar a una teoría cuyo límite a bajas energías es la supergravedad. Eso nos daría una condición complicada de consistencia.

En fín, realmente no sé si, con lo que he contado hasta ahora, este punto de vista aporta algo, salvo, tal vez que sea mas “natural” y unificado. 
Ya no hay dos cosas, espacio-tiempo y cuerdas, sólo una, el espacio-tiempo, ergo es más unificado. Y es mas “natural” porque no hay que postular algo tan exótico cómo una cuerda que no se disgrega ¿por qúe no?.

Por supuesto, lo divertido, es que en esa teoría surgen generalizaciones “naturales” que no lo son tanto en la teoría de cuerdas. 
Para empezar ya no hay motivo natural para imponer que la tensión sea la misma en todos los puntos y, por tanto, en el lagrangiano de la cuerda la T dependería de x T(x).
 Puesto que la tensión es el único parámetro (en última instancia, no en la práctica) libre de la cuerda, y aquí es simplemente algo que varía de punto a punto, al menos en principio, se pierde la idea de que si supiéramos T, y la suficiente matemática, podríamos deducir todo lo demás, las constantes de la física de bajas energías, correspondientes a compactificaciones/braneworlds concretas. 

Pero es de suponer que en la teoría geométrica que da lugar a esa tensión habría una constante, y se recuperaría el status quo.
Más divertido aún es pensar en que no hay que pensar que la T deba ser positiva. Habría que plantearse las T’s negativas.
 Si interpretamos la T cómo densidad de energía, es lo habitual, tendríamos que las cuerdas con T negativa tendrían energía negativa y, por tanto, podrían ser “materia exótica” en el sentido del término usado habitualmente en la literatura de agujeros de gusano.

Y, para cerrar esta entrada, dejo un link a un artículo publicado hoy en arxiv que trata precisamente de la posibilidad de tratar la tensión cómo algo dinámico en la teoría de cuerdas Dynamical String Tension in String Theory with Spacetime Weyl Invariance

Por supuesto en ese enlace el planteamiento y los detalles no están en nada relacionados con lo que yo planteo. 

Dos de los autores Steindard y Turok, son bien conocidos, aunque no necesariamente bien considerados por todo el mundo (están en la lista negra de Lubos, por ejemplo xD). 

Digamos que la publicación de ese artículo, que he empezado a leer, y seguiré leyendo ahora, me ha animado a escribir esta entrada, centrándome en las ideas relacionadas con lo que se plantea. 

Hay mas cosas que me gustaría comentar sobre la teoría de cuerdas, pero ya será cuando se presente la ocasión propicia.