Situado a 1.000 metros bajo tierra en la mina de Mozumi, en Japón, el Super-Kamiokande, o Super-K, es el mayor observatorio de neutrinos de la Tierra, una gigantesca estructura diseñada para estudiar los neutrinos provenientes de cualquier lugar de nuestra galaxia. Su cuerpo cilíndrico, de 40 metros de alto por 40 de ancho, alberga 50.000 toneladas de agua pura rodeadas por cerca de 11.000 tubos fotomultiplicadores que permiten detectar esta fantasmagórica presencia procedente del espacio.
Los neutrinos son partículas subatómicas producidas en gran cantidad en el curso de los procesos termonucleares en el interior de las estrellas. Aunque los científicos todavía desconocen muchas cosas sobre su naturaleza, han detectado que las fuentes más poderosas de neutrinos son el Sol y las Supernovas. Dado su débil vínculo con la materia, los neutrinos viajan a gran velocidad y atraviesan todo lo que lo que encuentran a su paso, incluida la Tierra y nosotros mismos. Se calcula que trillones de neutrinos bombardean nuestro planeta y pasan a través de nosotros a cada momento, cargados de potencial información que solo puede ser captada mediante estos grandes observatorios enterrados bajo tierra.
enterrarlos a gran profundidad tiene que ver con el potente ruido cósmico y los millones de partículas elementales que colisionan con la atmósfera. Es por eso que los detectores deben ser blindados por una gran masa protectora que los proteja del ruido, y construidos en galerías subterráneas o bajo el agua.
Una vez que llegan hasta el gran cilindro de agua, - por explicarlo de una forma simplificadora - los neutrinos interactúan con las partículas presentes en el tanque y emiten una radiación azulada que es detectada por los tubos fotomultiplicadores. El patrón característico de este destello, conocido como radiación de Cherenkov, proporciona información sobre la dirección y la clase de neutrino que llega.
Los neutrinos interaccionan muy raramente con la materia. El flujo enorme de neutrinos solares que pasan a través de la Tierra solo es suficiente para producir una interacción por cada 1036 átomos, y cada interacción produce solamente algunos fotones o la transmutación de un elemento. Para observar las interacciones de los neutrinos se necesita pues una masa grande para el detector, así como un sistema muy sensible para la amplificación de la luz producida.
Dado que la señal es muy débil, las fuentes de ruido de fondo se deben reducir todo lo posible. Las fuentes principales del ruido en el detector son las cascadas de partículas elementales producidas por los rayos cósmicos que colisionan con la atmósfera, y las partículas producidas por decaimiento radiactivo. Para reducir la cantidad de rayos cósmicos, los detectores se deben blindar por una masa grande protectora, por lo que son construidos en subterráneos profundos, o bajo el agua. Las fuentes de isótopos radiactivos también deben controlarse pues producen partículas enérgicas cuando decaen.
Como ven mis amigos los neutrinos, muy poco tienen que ver con el otro K.(por suerte).
adolfocanals@educ.ar
No hay comentarios:
Publicar un comentario