Generalmente las llamamos partículas elementales pero, lo cierto es que, algunas son más elementales que otras.
Los físicos experimentadores hicieron un buen en aquellos antiguos aceleradores de partículas por despejar la incógnita y saber, de una vez por todas, de qué estaba hecha la materia.
En el centro del átomo pues, se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico.
Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte.
Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos formar sustancias químicas (los elementos).
Pero el núcleo, a pesar de ser tan sólido, puede partirse.
Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas subnucleares.
La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Viajando a velocidades cercanas a la de la luz, dos partículas pueden chocar de forma violenta y, de ellas, surgen otras partículas más elementales de las que están conformadas las primeras.
Un protón está hecho de dos Quarks up y un Quark down, mientras que un neutrón, está hecho de dos Quarks down y un Quark up.

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso.
Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792,458 Km/s.
Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.
Teoría también fue el resultado de una publicación de Einstein de 1905. en teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas.
En teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético.
Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en una gran cantidad de “energía en reposo” de una partícula cualquiera, como se denota a continuación:
E = M x c2
Como la velocidad de la luz es muy grande, esta ecuación sugiere que cada partícula debe almacenar una cantidad enorme de energía, y en parte esta predicción fue la que hizo que la teoría de la relatividad tuviese tanta importancia la física (¡y para todo el mundo!).
Para que la teoría de la relatividad también sea autoconsistente tiene que ser holista, esto es, que todas las cosas y todo el mundo obedezcan a las leyes de la relatividad.
No son sólo los relojes los que se atrasan a grandes velocidades, sino que todos los procesos animados se comportan de la forma tan inusual que describe esta teoría cuando nos acercamos a la velocidad de la luz.

Pero sigamos hablando de los núcleos de los átomos que están formados por protones y neutrones, alrededor de los cuales orbitan los electrones.
Estos tres elementos (protones, neutrones y electrones) constituyen prácticamente toda la materia de la Tierra.
Mientras que el electrón se considera como una partícula “sin tamaño”, el protón, que está compuesto de quarks, es un objeto con tamaño específico. Hasta ahora, sólo dos métodos se han utilizado medir su radio.
Basándose en el estudio de las interacciones entre un protón y un electrón, ambos métodos se centran en las colisiones uno y otro o sobre el átomo de hidrógeno (constituido por un electrón y un protón).
El valor obtenido y que es el utilizado por los físicos, es 0,877 (+ / – 0,007) femtómetros.

Masa atómica
Una de las formas los científicos miden el tamaño de algo es a través de su masa. Los científicos podemos incluso medir cosas muy minúsculas como los átomos. Una medida del tamaño de un átomo es su “masa atómica”.
Casi toda la masa de un átomo (más del 99%) está en su núcleo, de manera que la “masa atómica” es realmente una medida del tamaño del núcleo de un átomo.
Los protones son prácticamente del mismo tamaño que los neutrones, y ambos son mucho más grandes que los electrones.
Un protón una masa aproximadamente 1.836 veces mayor que la masa del electrón, pero las masas de los protones y neutrones se diferencian menos de uno por ciento
Los protones tienen una carga eléctrica positiva, conocida a veces carga elemental, carga fundamental o carga de +1.
Los electrones tienen una carga del mismo valor pero de polaridad opuesta, -1. La carga fundamental tiene un valor de 1.602 x 10-19 coulombios.

Núcleo atómico
El núcleo de un átomo contiene protones y neutrones. Cada elemento (como el carbono, oxígeno o el oro) tiene diferente de protones en sus átomos.
¿Por qué es importante el número atómico?
Los átomos normales tienen el mismo número de electrones que protones.
El número de electrones es lo que hace que cada elemento se comporte de cierta manera en reacciones químicas.
De manera que el número atómico, que es el número de protones y electrones, es lo que hace que un elemento sea diferente a otro.
Hace algunos años ya que los físicos nos preguntábamos:
¿Podrían los protones ser puntos?
Y, tratando de saberlo, comenzaron a golpear los protones con otros protones de una energía muy baja (al principio) con el objeto de explorar la fuerza electromagnética entre los dos objetos cargados.

El Acelerador Lineal de Stanford. El SLAC, ubicado al sur de , acelera electrones y positrones a lo largo de sus 2 millas de longitud (algo mas de tres kilómetros), hacia varios blancos, anillos y detectores ubicados en su finalización.
Este acelerador hace colisionar electrones y positrones, estudiando las partículas resultantes de estas colisiones. Construido originalmente en 1962, se ha ido ampliando y mejorando seguir siendo uno de los centros de investigación de física de partículas mas avanzados del mundo.
El Centro ha ganado el premio Nobel en tres ocasiones.
La Ley de Coulomb nos dice que esta fuerza se extiende hacia el infinito, disminuyendo su intensidad con el cuadrado de la distancia.
El protón que hace de blanco y el acelerado están, claro, cargados positivamente, y como las cargas iguales se repelen, el protón“blanco” repele sin dificultad al protón lento, que no llega nunca a acercarse demasiado.
Así que se aumentaron la energía de los protones acelerados y, pudieron comprobar que ahora sí, las desviaciones en los patrones de dispersión de los protones indican que van penetrando con la hondura suficiente para tocar la llamada interacción fuerte, la fuerza de la que ahora sabemos que mantiene unidos a los constiutuyentes del protón.

Si los físicos experimentales de la década de los 60 hubieran podido tener a su disposición el moderno LHC… ¿Dónde estaríamos ?
La interacción fuerte es cien veces más intensa que la fuerza eléctrica de Coulomb, pero, al contrario que ésta, su alcance no es en absoluto infinito.
Al incrementar la energía de colisión, los experimentos desenterraron más y más detalles desconocidos de la interacción fuerte.
A medida que aumenta la energía, la longitud de onda de los protones(acordémonos de De Broglie y Schrödinger) se encoge.
Y, como se pudo ver, cuanto menor sea la longitud de onda , más detalles cabe discernir en la partícula que se estudie.
Robert Hofstadter, de la Universidad de Stantanford, tomó en los años cincuenta algunas de las mejores “imágenes” del protón.
En vez de un haz de protones, la “luz” que utilizó fue un haz de electrones de 800 MeV que apuntó a un pequeño recipiente de hidrógeno líquido.
Los electrones bombardearon los protones del hidrógeno y el resultado fue un patrón de dispersión, el de los electrones que salían en una variedad de direcciones con respecto a su movimiento original.
No era muy diferente a lo que hizo Rutherford. Al contrario que el protón, el electrón no responde a la interacción nuclear fuerte. Responde sólo a la carga eléctrica del protón, y por ello los científicos de Stanford pudieron explorar la de la distribución de carga del protón.

protón es una particular subatómica que se encuentra en el núcleo de todo átomo. Esta impresión artística muestra un protón y un neutrón.
Se midió que el radio del protón era de 2,8 x 10-13 centímetros; la carga se acumula en el centro, y se desvanece en los bordes de lo que llamamos el protón.
Los experimentos se repitieron muchas veces y los resultados, siempre fueron parecidos al hacerlos con haces de muones, que también ignoran la interacción fuerte al ser leptones como los electrones. (Medidas más precisas llevadas a cabo en nuestro tiempo, han podido detectar, diminutos cambios en el radio del protón que tienen enormes implicaciones.
El protón parece ser 0,00000000000003 milímetros más pequeño de lo que los investigadores habían pensado anteriormente, de hecho, y según han comentados los físicos del equipo que hizo el , las nuevas medidas podrían indicar que hay un hueco en las teorías existentes de la mecánica cuántica y algo falla en alguna parte.)

La imagen tomada en el SLAC, nos choca,
todos tenemos en la mente las del LHC
todos tenemos en la mente las del LHC
Sigamos con la historia.
-de 8 a 15 GeV- y obtuvieron un conjunto muy diferente de patrones de dispersión.
A “luz dura”, el protón presentaba un aspecto completamente distinto. Los electrones de energía relativamente baja que empleó Hofstadter podían ver sólo un protón “borroso”, una distribución regular de carga que hacía que el electrón pareciese una bolita musgosa.
Los electrones del SLAC pudieron sondear con mayor dureza y dieron con algunos “personajillos” que “correteaban” dentro del protón.
Aquella fue la primera indicación de la existencia real de los Quarks.

Todo avance ha requerido de muchísimo esfuerzo y de lo mejor de muchas mentes.
Como podemos ver por la escueta y sencilla explicación aquí contenida, hemos aprendido muchas cosas a base de observar con atención los resultados de los experimentos que la mente de nuestra especie ha ideado para poder los secretos de la Naturaleza.
Hemos aprendido acerca de las fuerzas y de cómo originan sus estructuras complejas, como por ejemplo los protones que no son, tan elementales como en un principio se creía.
Los protones (que son Bariones) están formados por tres quarks y, sus primos (los Mesones) están compuestos por un quark y un anti-quark.

Como nos decía el Nobel León Lederman:
“Uno no por menos que sentirse impresionado por la secuencia de ¡semillas dentro de semillas!.
La molécula está formada por átomos.
La región central del átomo es el nucleo.
El núcleo está formado por protones y neutrones.
El protón y el neutrón están formados por… ¿ dónde llegará ésto?
“Uno no por menos que sentirse impresionado por la secuencia de ¡semillas dentro de semillas!.
La molécula está formada por átomos.
La región central del átomo es el nucleo.
El núcleo está formado por protones y neutrones.
El protón y el neutrón están formados por… ¿ dónde llegará ésto?

No es fácil conformarse con la idea de que, en los Quarks termina todo.
Uno se siente tentado a pensar que, si profundizamos más utilizando energías superiores de las que podemos disponer (14 TeV), posiblemente -sólo posiblemente- podríamos encontrarnos con objetos más pequeños que… ¡como cuerdas vibrantes! nos hablen de la verdadera esencia de la materia que, habiéndonos sido presentada ya, es posible que esconda algunos secretos que tendríamos que desvelar.

No está mal que en este punto recordemos la fuerza magnética y gravitatoria que nos ayuda a comprender mejor el comportamiento de las partículas subatómicas.
El electromagnetismo, decíamos al principio, es la fuerza con la cual dos partículas cargadas eléctricamente se repelen (si sus cargas son iguales)
o se atraen (si tienen cargas de signo opuesto).
El electromagnetismo, decíamos al principio, es la fuerza con la cual dos partículas cargadas eléctricamente se repelen (si sus cargas son iguales)
o se atraen (si tienen cargas de signo opuesto).
La interacción magnética es la fuerza que experimenta una partícula eléctricamente cargada que se mueve a través de un campo magnético.
Las partículas cargadas en movimiento generan un campo magnético , por ejemplo, los electrones que fluyen a través de las espiras de una bobina.
De esto si hemos podido llegar a saber pero…
Las partículas cargadas en movimiento generan un campo magnético , por ejemplo, los electrones que fluyen a través de las espiras de una bobina.
De esto si hemos podido llegar a saber pero…

Lo cierto es que, de momento es solo un sueño alcanzar la energía de Planck, está muy lejos de nuestro alcance.
Poder contar con la energía de Planck, por el momento y durante mucho, mucho, muchísimo tiempo, será sólo un sueño que algunos físicos tienen en la mente.
Una regla universal en la física de partículas es que partículas con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo.
El modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero existen varias razones para sospechar que sus predicciones pueden, finalmente (cuando podamos emplear más energía en un nivel más alto), resultar equivocadas.
Poder contar con la energía de Planck, por el momento y durante mucho, mucho, muchísimo tiempo, será sólo un sueño que algunos físicos tienen en la mente.
Una regla universal en la física de partículas es que partículas con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo.
El modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero existen varias razones para sospechar que sus predicciones pueden, finalmente (cuando podamos emplear más energía en un nivel más alto), resultar equivocadas.
Vistas a través del microscopio, las constantes de la naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son.
Hay algo muy erróneo aquí.
Un punto de vista matemático no hay nada que objetar, pero la credibilidad del modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas, o lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas. ¿Y por qué debería ser el modelo válido hasta aquí?
Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables.
¿Dónde está la partícula de Higgs?
¿Cómo se esconde de nosotros el gravitón?
y, por no dejar nada en el tintero… ¿Dónde estarán las cuerdas?
Hay algo muy erróneo aquí.
Un punto de vista matemático no hay nada que objetar, pero la credibilidad del modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas, o lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas. ¿Y por qué debería ser el modelo válido hasta aquí?
Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables.
¿Dónde está la partícula de Higgs?
¿Cómo se esconde de nosotros el gravitón?
y, por no dejar nada en el tintero… ¿Dónde estarán las cuerdas?
Parece que el Modelo estándar no admite la cuarta fuerza (Gravedad), y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad.
Ese es el Modelo que necesitamos conocer mejor la Naturaleza.
Ese es el Modelo que necesitamos conocer mejor la Naturaleza.
Claro que las cosas no son tan sencilla y si deseamos evitar la necesidad de un delicado ajuste de las constantes de la naturaleza, creamos un nuevo problema: ¿cómo podemos modificar el modelo estándar de tal manera
que el ajuste fino no sea necesario?
Está claro que las modificaciones son necesarias, lo que implica que muy probablemente haya un límite más allá del cual el modelo tal
como está deja de ser válido.
El modelo estándar no será nada más que una aproximación matemática que hemos sido capaces de crear, de forma que todos los fenómenos que hemos observado hasta el presente están reflejados en él, pero cada vez que se pone en marcha un aparato más poderoso, tenemos que estar dispuestos a admitir que puedan ser necesarias algunas modificaciones del modelo para incluir nuevos que antes ignorábamos.
que el ajuste fino no sea necesario?
Está claro que las modificaciones son necesarias, lo que implica que muy probablemente haya un límite más allá del cual el modelo tal
como está deja de ser válido.
El modelo estándar no será nada más que una aproximación matemática que hemos sido capaces de crear, de forma que todos los fenómenos que hemos observado hasta el presente están reflejados en él, pero cada vez que se pone en marcha un aparato más poderoso, tenemos que estar dispuestos a admitir que puedan ser necesarias algunas modificaciones del modelo para incluir nuevos que antes ignorábamos.

Más allá del modelo estándar habrá otras respuestas que nos lleven a poder otras preguntas que en este momento, no sabemos ni plantear por falta de conocimientos.
Si no conociéramos que los protones están formados por Quarks, ¿cómo nos podríamos preguntar si habrá algo más allá de los Quarks?
Si no conociéramos que los protones están formados por Quarks, ¿cómo nos podríamos preguntar si habrá algo más allá de los Quarks?
Se han inventando nuevas ideas, como la supersimetría y el technicolor.
Los astrofísicos estarán interesados en tales ideas porque predicen una gran cantidad de nuevas partículas superpesadas, y también varios tipos de partículas que interaccionan ultradébilmente, los technipiones.
Éstas podrían ser las WIMP’s (Weakly Interacting Massive Particles, o Partículas Masivas Débilmente Interactivas) que pueblan los huecos entre las galaxias, y serían así las responsables de la masa perdida que los astrofísicos siguen buscando y llaman “materia oscura”.
Los astrofísicos estarán interesados en tales ideas porque predicen una gran cantidad de nuevas partículas superpesadas, y también varios tipos de partículas que interaccionan ultradébilmente, los technipiones.
Éstas podrían ser las WIMP’s (Weakly Interacting Massive Particles, o Partículas Masivas Débilmente Interactivas) que pueblan los huecos entre las galaxias, y serían así las responsables de la masa perdida que los astrofísicos siguen buscando y llaman “materia oscura”.
Que aparezcan “cosas” nuevas y además, imaginarlas antes, no es fácil. Recordemos cómo Paul Dirac se sintió muy incómodo cuando en 1931 dedujo, a partir de su ecuación del electrón, que debería existir una partícula con carga eléctrica opuesta.
Esa partícula no había sido descubierta y le daba reparo perturbar la paz reinante en la comunidad científica con una idea tan revolucionaria, así que disfrazó un poco la noticia:
“Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió.
Cuando poco después se identificó la auténtica antipartícula del electrón
(el positrón) se sorprendió tanto que exclamó:
“¡Mi ecuación es más inteligente que su inventor!”.
Este último comentario es poner un ejemplo de cómo los físicos trabajamos y buscamos caminos matemáticos mediante ecuaciones de las que, en cualquier momento (si están bien planteadas), surgen nuevas ideas y descubrimientos que ni se podían pensar.
Así pasó también con las ecuaciones de Einstein de la realtividad general, donde Schwarzschild dedujo la existencia de los agujeros negros.
Esa partícula no había sido descubierta y le daba reparo perturbar la paz reinante en la comunidad científica con una idea tan revolucionaria, así que disfrazó un poco la noticia:
“Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió.
Cuando poco después se identificó la auténtica antipartícula del electrón
(el positrón) se sorprendió tanto que exclamó:
“¡Mi ecuación es más inteligente que su inventor!”.
Este último comentario es poner un ejemplo de cómo los físicos trabajamos y buscamos caminos matemáticos mediante ecuaciones de las que, en cualquier momento (si están bien planteadas), surgen nuevas ideas y descubrimientos que ni se podían pensar.
Así pasó también con las ecuaciones de Einstein de la realtividad general, donde Schwarzschild dedujo la existencia de los agujeros negros.

Claro que, a todo esto, tenemos que pensar en un Universo muy vasto y muy complejo que está dinamizado por leyes y energías que, aunque creemos conocer, nos estar ocultando muchas “cosas” que aún no sabemos y,
llegar más allá de los Quarks…¡No será nada fácil!
llegar más allá de los Quarks…¡No será nada fácil!
Si pensamos detenidamente lo que hasta el momento llevamos conseguido (aunque nuestros deseos se desboquen queriendo ir mucho más allá), tendremos que convenir en el hecho cierto de que, haber podido llegar al átomo y también a las galaxias es, al menos ¡asombroso!
Sabemos de lugares a los que, físicamente (probablemente) nunca podamos ir, la física nos lo impide…al menos de momento en lo relacionado con las galaxias y, de manera irreversible el “universo cuántico” que sólo podremos sondear con inmensas energías en los aceleradores que nos dirán,
lo que queremos saber.
Sabemos de lugares a los que, físicamente (probablemente) nunca podamos ir, la física nos lo impide…al menos de momento en lo relacionado con las galaxias y, de manera irreversible el “universo cuántico” que sólo podremos sondear con inmensas energías en los aceleradores que nos dirán,
lo que queremos saber.